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ABSTRACT: In the middle of 19
th

 century, study of elliptic curves was started by algebraists, algebraic 

geometers and number of theorists. But first introduction of Elliptic curve cryptography was given in 1985 by 

Neal Koblitz and Victor Miller. Elliptic Curve cryptography (ECC) provides same functionality as RSA 

schemes in public key mechanisms. Difference lies in security of ECC which is based on hardness of elliptic 

curve discrete logarithmic problem (ECDLP). RSA schemes are used by most products and standards that use 

public key cryptography for encryption and digital signatures. Elliptic curve cryptography is competing 

system to RSA. We discuss the elliptic curves and illustrate the mathematical processing of the elliptic curves 

involving one public key and private key followed by two public keys and private keys. 
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I. INTRODUCTION 

Straight lines with the points ��, �� are the simplest 

curves, where � and � are related as following by an 

equation:                 � = �� + 
 .                             (1.1)             

The next step up in complexity would involve equations 

like � = ��� + 
� + � ,                      (1.2) 
where the right hand side has a quadratic polynomial in �. These type of equations represent parabolas.Now to 
get something more complicated, we can consider the 

equations where � also occurs as a square and written as                                                               ��
= ��� + 
� + � .                           �1.3� 

The equation (1.3) represents an ellipse or a hyperbola. 

Equations (1.2) and (1.3) are examples of curves known 

as conic sections, because they can be obtained by 

cutting a cone in a suitable way. Once the degree of the 

polynomial in �  on the right side of the equation 

(1.3)becomes three then, we get                                                          ��
= ��� + 
�� + �� + � ,             �1.4� 

which is known as the equation of elliptic curves, [6].  

Diaphantous [1] in his work gave us elliptic curves for 

first time. A typical example was given by Diaphantous: 

a number, say 7, which denotes the difference of two 

cubes i.e. (7 = 8 − 1�, we have to find the rational 

numbers a and b such that 7 = �� + 
� (the numbers 
involving Diaphantous’ numbers need to be positive 

rational numbers, otherwise problem would become 

trivial).  

Much later Newton, Lucas and Sylvester discovered that 

there exists a very important geometric interpretation. 

The integral solution for the equation �� + 
� = � can 

be obtained by elliptic curves. Set  � = �����
��  and 

 
 = �����
��  , we get the transformed equation as 

�� = �� − 432 ��,  an elliptic curve. In the above 

example, if we take the following curve �: �� − �� = 7 

and the point   = �2,1�  which needs to be rational. 

Then the tangent to the curve� at   will intersect the 

curve � in another rational point Q. Fermant and Euler 

considered Diophantine problems a big thing but then 

Gauss by providing quadratic reciprocity law started 

giving number theory a new direction. During these 

times, elliptic curves were studied mainly by number 

theorists like Cauchy, Lucas, Sylvester, Poincare and 

Beppo Lavi as well as by complex algebraic geometers 

like Clebsch or Juel. In 1890 Juel gave geometric 

interpretation of group law. Poincare in 1901questioned 

about rational points on elliptic curves being finitely 

generated which was proved by Murdell in 1922. The 
modern theory took off in the 1930 with Hasse’s work 

on the number of points on elliptic curves over finite 

fields, [5, 17, 19]. The use of  elliptic curves for 

factoring integers was found by Lenstra [8], and their use 

for proving Fermat’s last theorem was discovered by 

Frey [11] be used for proving Fermat’s last theorem and 

now elliptic curves are used for safe communication. 

The general equation of elliptic curve is   ��!�:   �� + "�� + #� = �� + ��� + 
� + � ,   (1.5) 

I

J E

E

CE



IJEECE (Research Trend)  9(1&2): 12-19(2020)      Sharma and Badoga                              13 

 

where ", #, �, 
, � are elements of field K. Let K be a 

field of characteristic two, than an elliptic curve over K 

is the set of points satisfying an equation of type ��!�:  �� + �� = �� + �� + 
                    (1.6) 
or ��!�:  �� + �� = �� + ��� + 
.                (1.7) 
If K denotes the field of characteristic not equal to 2, 

then by using transformation  

� → � − �"� + #�
2 , 

equation (1.5) can be simplified as  ��!�:   �� = �� + ��� + 
� + �,               (1.8) 
and if K is a field of characteristic not equal to 3 also, 

then by using  transformation 

� → � − �
3 , 

 the equation (1.8) becomes                         ��!�:  �� = �� + �� + 
 .         (1.9) 

(a) Elliptic Curves Over Rationals 

If � and 
 are rational numbers in equation (1.9), then 

it is known as the elliptic curve over the field ℚ of 

rational numbers. In many areas of number theory, study 

of the group ��ℚ�continued to play a fundamental role. 

When a landmark result which described  ��ℚ�  was 

proved by L.J. Mordell, the modern theory of 

Diophantine equations as well as the solution of 
polynomial equations using integers or rational numbers 

was initiated in 1922. 

Theorem (Mordell, 1922) [16] : Let E denotes an 

elliptic curve as defined in (1.9), with �, 
 ∈  ℚthen the 

group which is formed by rational points on ��ℚ� is an 

abelian group that is finitely generated. Moreover, there 

exista set of points  ' ,  � , … … . . ,  ) ∈ ��ℚ� that are 

finite such that every point  ∈ ��ℚ� could be written 
in the form  = �' ' + �� � + ⋯ … + �) )                  (1.10) 

for some �',��, … . , �) ∈ ℤ. 

(b) Elliptic Curves Over Real Numbers 
Elliptic curves bearing no direct relation to ellipses are 

cubic equations in 2 variables. These are same as 

equations used for calculation of length of curve in 

circumference of an ellipse. The general equation that 

denotes an elliptic curve is (1.5). A special class of the 

form (1.9) of elliptic curves is used. In this equation 

if   4�� + 27
� ≠ 0 , the equation represents a 
non-singular elliptic curve; or else, the equation 

represents an elliptic curve that is singular in nature. In 

case of non-singular elliptic curve, the equation�� +�� + 
 = 0, has three distinct roots which may be real or 
complex, and in case of elliptic curves which are 

singular, the equation  �� + �� + 
 = 0 do not contain 
three distinct roots. Non singular curves are used for data 

encryption since singular curves cannot be used these 

days as they now become easy to crack. It is clearly 

evident that left hand side has a degree two and right 

hand side has degree 3. If all roots are real, horizontal 

lines can intersect curves in three points whereas vertical 

line intersects curves mostly at two points [3]. 

Example: Let the below mentioned elliptic curves 

represents two equations:                           �� = �� −                       (1.11) 
and                             �� = �� + � ,                   (1.12) 
both are non-singular. However, the equation (1.11) has 

three real roots � = −1,0,1 . 
but the equation (1.12)contains only one real root,� = 0 

and two imaginary ones. 
 

  

Fig. 1. The Elliptic Curve�� = �� − � 

 

 
Fig. 2. The elliptic curve  �� = �� + �. 
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(a) Elliptic Curves Over Complex Numbers 
Let E denote elliptic curve which is defined over the 

field ℂ of complex numbers or say ��ℂ�. Thus, E is 

equal to the set of all pairs ��, �� of complex numbers 

that satisfy equation (1.9), including the point at 

infinity/.  

Although E denotes curve, if we take into account the 
concept of geometrical pictures, it is two-dimensional, 

whose co-ordinates signifies the real and imaginary parts 

of � and � [7]. 
 (b) Elliptic Curves Over Finite Field 

When the coefficients �, 
 and �, � are restricted to the 

element of a finite field  ℤ0 in equation (1.9), then the 

elliptic curves are known as prime curves. These prime 
curves are very important for cryptographic applications. 

To define elliptic curves over ℤ0, a cubic equation is 

used, whose coefficients and variables belong to the set 

of integers ℤ0 = 0, 1, 2, 3, … , 1 − 1, which is stated as 

�0��, 
�:   �� 23� 1 = ��� + �� + 
� 23� 1 ,                 

(1.13) 

with the condition 4�� + 27
� ≠ 0 . 
Zero point is the set�0��, 
�, that has all pairs of integers ��, ��,which fulfil above equation (1.13), along with 

point /. 

Example: Let  � = −1, 
 = 0 and 1 = 11 , then the 
equation (1.13) becomes �''�−1, 0�:    �� 23� 11 = ��� − �� 23� 11 .                   
(1.14) 

The equation (1.14) consist of the following elements: 
�''�−1, 0�= �0, 0�, �1, 0�, �4, 4�, �4, 7�, �6, 1�, �6, 10�, �8, 3�, �8, 8�, �9, 4�, �9, 7�, �10, 0� . 

(c) Elliptic Curves Over Gf (67� 

The set 89�2�� consists 2� elements.An elliptic curve 

E defined over finite field 9�: is represented with the 

help of the equation              ��9�:� ∶  �� + �� = �� + ��� + 
      (1.15) 

where �, �, �, 
 ∈ 9�: . The points on E are denoted 

as��9�:� = { ��, ��: �, � ∈  9�:and satisfy �� + �� =�� + ��� + 
} ∪ {/}. 
The mathematical tools of various cryptosystems are 

modular multiplication and modular exponentiation. The 

addition and multiple addition in �0��, 
� or ��:��, 
� 

are the mathematical tools for cryptographic 

applications. In other words, the addition in elliptic 

curve cryptography plays same role as modular 

multiplication in other cryptosystem and multiple 

addition plays the role which is similar to modular 

exponentiation in other cryptosystems like RSA 

cryptosystems [4,10,13, 15, 18]. 

(II)  

(A) ELLIPTIC CURVE CRYPTOGRAPHY  

INVOLVING SINGLE PRIVATE KEY AND 
SINGLE PUBLIC KEY     

   
In case of RSA cryptosystem modular multiplication and 

modular exponentiation are two mathematical tools, 

which are used for cryptographic applications. In the 

same way, we use addition and multiple additions in �0��, 
�  or ��:��, 
�  as mathematical tools for 

cryptographic applications.We know that the security 

that corresponds to RSA cryptosystem involves a hard 

problem of factoring the product of two large primes. On 
the other side, El Gamal cryptosystem signifies the 

difficulty of discrete logarithm. Now, if we want to 

design a cryptosystem making use of elliptic curves, we 

require to search a hard problem similar to RSA and 

ElGamal. For our purpose, assume the equation  ? = @ , where  , ? ∈ �0��, 
� and @ < 1. In this case 

? can be calculated easily for given @ and   . But it is 

relatively very difficult to compute@ for a given   and  ?. This problem that consists of elliptic curves is called 

discrete logarithm problem. The number @  is called 

discrete logarithm of ? to the base  , [7, 9]. 

Example:  The elliptic curve which is defined by �� = �� + 9� + 17 over9�� , 
 is a group. The discrete logarithm @ of ? = �4, 5�that 

corresponds to the base  = �16, 5�  is required.To 

evaluate@,we have to compute multiples of   until ? is 

found. The initial multiples of  are    = �16, 5�, 2 =�20, 20�, 3 = �14, 14� , 4 = �19, 20�,   5 =�13, 10�, 6 = �7, 3�, 7 = �8, 7�, 8 =�12, 17�,   9 = �4, 5� . Since 9 = �4, 5� = ?  the 

discrete logarithm of ?  to the base   HI @ = 9 .In 

practical application, @ would be large enough such that 

it would not be possible to determine @ 

particularlyusing this manner. 

Key Generation in ECC      
To generate the public and private key in ECC. The user 

A picks a large prime p and elliptic curves 

parameters� and 
 for equation �� 23� 1 = ��� + �� + 
� 23� 1 . 
Next he chooses a point  8 = ��',  �'� ∈ �0��, 
�  , 

whose order is very large value �. This point 8 is called 

base point and the order of 8 means,�8 = 0, such that �  is the smallest positive integer. Any user A picks �M < � and computes   M = �M × 8 . 
The number �M is the private key and  M is the public 

key of the user A. It is clear that  M ∈ �0�� , 
�. 

Key Exchange in ECC     

  

Consider two users Alice (public key  M , private key �M � and Bob (public key  O , private key �O � want to 

exchange their keys. This key exchange depends on the 

following steps: 

1). Alice sends  M to Bob. 

2). Bob calculates@ = �O ×  M = �O × ��M × 8� . 
3). Bob sends  O  to Alice. 

4). Alice calculates@ = �M ×  O = �M × ��O × 8�. 
Thus, they can share the key @ = �M�O8. 

Example: Let 1 = 211, � = 0, 
 = −4, therefore, the 

curve is 
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�� 23� 211 = ��� − 4� 23� 211, 8 = �2, 2� . 
To generate the public key and private key, the user Bob 

chooses�O = 121 , then the public key of user Bob is  O = �O × 8 = 121�2, 2� = �115, 48�. 
Similarly Alice chooses her private key �M = 203 and 

computes her public key   M   = �M × 8             = 203 �2, 2�               = �130, 203�. 
The shared key is @ = 121�130, 203� = 203�115, 48� = �161, 69� . 
Encryption in  ECC 
Elliptic curve cryptosystem can be used for encryption 

and decryption. Let the user Alice wants to encrypt a 

message m for the user Bob, then the following steps are 

involved: 

Alice encodes the message m as  P = ��, �� . 
A random number @ is chosen by Alice and produces 

the cipher text QP = R@ × 8,  P + @ ×  OS 
and sends this cipher text QP to Bob. 

Remark: Initially the English language message will be 

converted into the numerical message m. Then m will be 

connected with some point of the elliptic curve with 

given methods discussed in the literature of elliptic curve 

cryptography. 

Decryption in ECC 
To decrypt the message, Bob works as follows: 

Bob computes �O × @ × 8 , 
Bob again computes                  P + @ ×  O − �O × @ × 8=  P + @ ×  O − @ × ��O × 8�                                                  =  P + @ ×  O − @ ×  O   =  P  . 
In other words, we can say Bob picks the first 

co-ordinate @ × 8 of QP, multiply this with his private 
key and then subtract this from the second point  P + @ O . 

(B)  ELLIPTIC CURVE CRYPTOGRAPHY 

INVOLVING TWO  

PRIVATE KEYS AND TWO PUBLIC KEYS 

  
The security of the elliptic curve cryptography depends 

on how difficult it is to find the value of k for given value 

of kP, the Elliptic Curve Discrete Logarithmic   

Problem (ECDLP). To enhance the security level in this 
work, it is proposed that   both the sender and the 

receiver use two private keys and two public keys. 

Proposed Method  
Considering Alice and Bob as two communicating 

parties who want to convey the messages they agreed 

upon using elliptic curves  �0��, 
� ,  where  1 denotes 

prime number and a point Q which is randomly selected 

on the elliptic curve. A large number T which is random 

is selected by Alice which is less than the order of �0��, 
� and a point U on the elliptic curve. The value 

of U1 = T�Q + U�is computed by Alice and also the 

value of  U2 = TU . The random number  T  and the 

point  U is chosen as private keys of Alice and 

publishesU1 andU2 as her general public keys. Similarly 

a large random number  V and a point W is selected by 
Bob on the elliptic curve. Bob further computes the 

value of W1 = V�Q + W�  and W2 = VW . He keeps the 

random number V and the point W as his private keys 

and W1 andW2 as his general public keys are published 

upon. After deciding on publication of public key, 

calculation of following quantities by communicating 

parties and their publishment as specific public keys of 

each other is agreed upon. UO = TW2 is calculated by 

Alice and published as specific public key for Bob which 

is used by Alice.WM = VU2  is calculated by Bob and 

published as specific public key for Alice which is used 

by Bob, [5]. We can summerise as follows: 

-Alice’s private key
1

= T , a large random number 

which is less than the order denoted by the generator. 

-Alice’s private key
2

= U, a point on the elliptic 

curve�0��, 
�. 
-Alice’s general public key

1
= U1, a pointon the elliptic 

curve�0��, 
�. 
-Alice’s general public key

2
= U2, a pointon the elliptic 

curve �0��, 
�. 
-Alice’s specific public key to be used for Bob = UO , a 

point on the elliptic curve�0��, 
�. 
-The private key

1
 3X W3
 = V, a large random number 

less than the order of the generator. 

-The private key
2
 3X W3
 = W, a point on the elliptic 

curve�0��, 
�. 
-General public key

1
 3X W3
 = W1 , a point on the 

elliptic curve�0��, 
�. 
-General public key

2
 3X W3
 = W2 , a point on the 

elliptic curve�0��, 
�. 
-Specific public key for Alice = WM to be used by Bob, a 

point on the elliptic curve�0��, 
�. 
Encryption  
If Bob is willing to communicate message M, then using 

code table agreed upon by communicating parties Alice 

and Bob, the characters of message are coded to points 

on the elliptic curve. After wards each message point is 

encrypted to cipher points �1,  �2  making a pair. A 

random number  Y is used which is different for the 

encryption of different message points. The cipher 

points are                                                    �1 = YQ 
and                         �2 = Z + �V + Y�U1 − YU2 + UO . 
Using code table, Bob connects the pair of points of each 

message point into text characters. Then Alice is 

communicated the cipher text by Bob in public channel. 

 

Decryption  
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On receiving cipher text, these texts are converted to 

points on elliptic curves by Alice and she recognizes the 

points �1  and �2  of each character followed by 

decryption of message as below: 

Decryption Works Out Property: �V + Y�U1 − YU2 + UO = Y�U1 − U2� + VU1 + UO = YTQ + VTQ + VTU + VTW                                           = YTQ + VT�U + W + Q� T�1 + TW1 + WM  = TYQ + TVQ + TVW + TVU = YTQ + VT�U + W + Q� . 
Therefore, �V + Y�U1 − YU2 + UO = T�1 + TW1 + WM 
and �2 − �T�1 + TW1 + WM�= RZ + �V + Y�U1 − YU2 + UOS− RT�1 + TW1 + WMS = Z + RYTQ + VT�U + W + Q�S− RYTQ + VT�U + W + Q�S = Z . 
III. ILLUSTRATION 

Example: If the cryptosystem parameters are �23�1, 1�,8 = �3, 10� and the private key of the user B is�O = 4, 
then  

a) Find the public key of the user B. 

b) Find the cipher text QP for the message  P = �6, 4� 

by taking k = 2. 

c) How can the user B recover the plain text   P ? 

Solution : 
 a) The user B’s public key is given by   O = �O × 8             = 4 × �3, 10� = �17, 3� . 
b) The  cipher text QP  for the message  P =�6, 4� is                      QP = R@ × 8,  P + @ ×  OS . 
First compute @ × 8 = 2 × �3, 10� = �7, 12� , 
     and then  P + @ ×  O   = �6, 4� + 2�17, 3� 
 

 

 = �6, 4� + �13, 16�   = �6, 19� . 
c) To recover the plain text  P from QP, the user 

B computes the following steps: 

B computes �O × @ × 8 = 4 × 2�3, 10�                     = 8 × �3, 10�                 = �13, 16� . 
Now B computes                P + @ ×  O − �O × @ × 8 = �6, 19� − �13, 16�                         = �6, 4�       =  P  . 
Hence, the user B can recover the corresponding plain 

text   P = �6, 4� . 
 
Example: Consider an elliptic curve �2 = �3 + 2� + 9 . 
Its graph is shown below: 

 

 

Fig. 3. Elliptic Curve�� = �� + 2� + 9. 
 
Now the elliptic curve denoted by: �37�2,9�:  ��2 = �3 + 2� + 9� 23� 37, 

The points defined for the elliptic curve �37�2, 9� are as 

follows: 
 

 

 

 

[\
]
\̂
∞, �5, 25�, �1, 30�, �21, 32�, �7, 25�, �25, 12�, �4, 28�, �0, 34�, �16, 17�, �15, 26�,�27, 32�, �9, 4�, �2, 24�, �26 ,5�, �33, 14�, �11, 17�, �31, 22�, �13, 30�, �35, 21�,�23, 7�, �10, 17�, �29, 6�, �29, 31�, �10, 20�, �23, 30�, �35, 16�, �13, 7�, �31, 15�,�11, 20�, �33, 23�, �26, 32�, �2, 13�, �9, 33�, �27, 5�, �15, 11�, �16, 20�, �0, 3�,�4, 9�, �25, 25�, �7, 12�, �21, 5�, �1, 7�, �5, 12�, _\̀

\a
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��b�2,9�:  �� = �� + 2� + 9 23� 37 

Fig. 4. 

Let Q = �9, 4�. A number T = 5 which is random is 

selected by Alice, any let   U = �10, 20�be any point on the elliptic curve. Alice 

computes            U1 = T�Q + U�      = 5R�9, 4� + �10, 20�S            = �1, 7� , U2  = TU                    = �33, 23� . 
The random number T = 5 and the point U is kept by 

Alice on the elliptic curve as her secrete keys and 

publishesU1 andU2 as the public keys of Alice. 

The values of  V = 7, W = �11, 20�  on the elliptic 
curve is selected by Bob. He further computes W1 = V�Q + W�           = �11,17� , 

W2 = VW                = �23, 30� . 
He keeps the random number V = 7 and the point W 

on the elliptic curve as his secrete keys and 

publishesW1 andW2 as his public keys. 

Alice calculatesUO = TW2 = �15, 11� , 
and Bob calculatesWM = VU2 = �2, 13�. UO as the specific public key for Bob is published by 

Alice and WM  as specific public key for Alice is 

published by Bob. 

Encryption 
Suppose Bob has to communicate message ‘attack’ to 

Alice. He will begin with converting all text characters 

of message into points on elliptic curves with the help 
of code table they agreed upon as given below: 
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1). In the message ‘attack’ the first character ‘a’ 

signifies the point�5, 25�using the code table. A random 

number Y = 8 is selected by Rob for encrypting the 

character ‘a’. Then the point  �5, 25�  is encrypted 

as �1 = YQ = �1, 30�  which further points to the 

character ‘b’ in the conversion table. �2 = Z + �V + Y�U1 − YU2 + UO = �2, 13�, 
 this corresponds to ‘5’ in the table. So the character ‘a’ 

in the plain text is encrypted to the two characters{
, 5} 

in the cipher text. 

2). ‘t’ is a point�10, 17� in the code table. Let Y = 12. �1 = �21, 32�, this points to ‘c’ in the code table. �2 = Z + �V + Y�U1 − YU2 + UO = �2, 24�, 
 this points s to ‘ c’ in the code table. So ‘c’ is encrypted 

as{�, c}. 

3). ‘t’ is a point �10, 17� in the code table. let Y = 19.            �1 = �4, 9�, this points to ‘#’ in the code table.           �2 = Z + �V + Y�U1 − YU2 + UO = �27, 32�,  
this pointsto ‘j’  in the code table. So ‘t’ is encrypted as {#, e}. 

4). ‘a’ is a point �5, 25� in the code table. Let Y = 2. �1 = �29, 31�, this points to ‘v’ in the code table. �2 = Z + �V + Y�U1 − YU2 + UO = �1, 30�,  this 

points to ‘b’ in the code table. So ‘c’ is encrypted 

as{#, 
} . 
5). ‘c’ is a point �21, 32� in the code table. Let Y = 3. �1 = �1, 30�, this points to ‘b’ in the code table. �2 = Z + �V + Y�U1 − YU2 + UO = �31, 22�,  this 
points to ‘p’ in the code table. So ‘a’ is encrypted 

as{
, 1} . 
6). ‘k’ is a point �9, 4� in the code table. Let Y = 23. �1 = �25, 25�, this points to @ in the code table. �2 = Z + �V + Y�U1 − YU2 + UO = �4, 28�, this 

points to ‘f’ in the code table. So ‘k’ is encrypted 

as{@, X}. 

Bob communicates {
, 5; �, c; #, e; #, 
; 
, 1; @, X}  as 

the cipher text to Alice in public channel. 

Decryption  

The cipher text {
, 5; �, c; #, e; #, 
; 
, 1; @, X} after 

having been received by Alice is converted by using the 

cipher characters into the points �1, 30�, �2, 13�; �21, 32�, �2, 24�;  �4, 9�, �27, 32�;   �29, 31�, �1, 30�;  �1, 30�,  �31, 22�; �25, 25�, �4, 28�. 

By taking two points �1 and�2at a time the message is 

decrypted by Alice. 1�. Z = �� − �T�' + TW' + WM� = �5, 25� , which is 

represented by the character ‘a’ in the code table. 2�. Z = �2 − �T�1 + TW1 + WM� = �10, 17�, which is 

represented by the character ‘t’ in the code table. 3�. Z = �2 − �T�1 + TW1 + WM� = �10, 17�, which is 
represented by the character ‘t’ in the code table. 4�. Z = �2 − ��1 + TW1 + WM� = �5, 25�, which is 

represented by the character ‘a’ in the code table. 5�. Z = �2 − �T�1 + TW1 + WM� = �21, 32�, which 

corresponds to the character ‘c’ in the code table. 

6�. Z = �� − �T�' + TW' + WM� = �9, 4� , which is 

represented by the character ‘k’ in the code table. 

Therefore, ‘attack’ is the original message. 

IV. APPLICATIONS OF ELLIPTIC CURVES 

1). Elliptic Curves used for factoring integers [8]. 
2). Elliptic Curves used for proving Fermat’s Last 

Theorem [11]. 

3). Elliptic Curves used for Primality Testing [2]. 

4). Elliptic Curves used in Public key Cryptography [9]. 
5). Key exchange. 

6). Digital signature. 

7). Authentication. 

8). Content Based Filtering in Recommender Systems 

[12]. 

9). Safety and security of Recommender Systems [14]. 

10). In Smart card companies such as Gem plus are also 

using Elliptic Curve Cryptography to improve their 

product’s security. 

V. CONCLUSION 

We discussed the mathematical structures of Elliptic 

Curves. The use of these Elliptic curves improved the 

security of the message which traverse over the 

insecure channels. Further we discussed the elliptic 

curves cryptography involving one public key and 

private key followed by two public keys and private 

keys. Also we illustrated both of these structures 

mathematically.  
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